Skip to main content

Pituitary Gland what is it?




The pituitary gland is a pea-sized gland located at the base of the skull between the optic nerves. The pituitary gland secretes hormones. Hormones are chemicals that travel through our blood stream. The pituitary is sometimes referred to as the "master gland" as it controls hormone functions such as our temperature, thyroid activity, growth during childhood, urine production, testosterone production in males and ovulation and estrogen production in females. In effect the gland functions as our thermostat that controls all other glands that are responsible for hormone secretion. The gland is a critical part of our ability to respond to the environment most often without our knowledge.
The pituitary gland actually functions as two separate compartments an anterior portion (adenohypohysis-hormone producing) and the posterior gland (neurohypophysis). The anterior gland actually is made of separate collection of individual cells that act as functional units (it is useful to consider them as individual factories) that are dedicated to produce a specific regulatory hormone messenger or factor. These factors are secreted in response to the outside environment and the internal bodily responses to this environment. These pituitary factors then travel through a rich blood work network into the blood stream and eventually reach their specific target gland. They then stimulate the target gland to produce the appropriate type and amount of hormone so the body can respond to the environment correctly.
Similar to the cortisol factory there are additional factories:
  • Growth Hormone
  • Prolactin
  • Gonadotropin ("sex hormones")
  • Thyroid
These five axes (factories) function as the anterior pituitary gland neuroendocrine unit. If any one of these factories become excited and start to overproduce their respective hormonal factor the net result is excess production of the final hormone product. So in the above example, if the cortisol cells (corticotrophs) lose their ability to respond to the normal stimuli from the environment and hypothalamus and develop their own independent, uncontrolled autonomous secretion they will produce more cortisol than the body requires. In return the adrenal gland will be over stimulated and secrete unregulated and unneeded catecholomines (stress chemicals). The net result is excess production of these important chemicals that raise the blood pressure and drive the heart in order to respond to stress when needed and can cause the body and internal organs to be stressed when there is no need. The consequences of overdriving the internal organs of the body can be life threatening. Often these cells that overproduce their respective hormone will clump together within a given area of the pituitary gland creating a true factory of over production – pituitary tumor.
In addition to these five factories (cell lines) that produce hormones the anterior pituitary gland also contains remnants of the parent cells from which each of these individual cells came from. Specifically as the pituitary gland was formed the anterior gland contained a parent cell (pituicyte) which if you will was a parent cell. During embryological development this parent cells grew and matured into a series of daughter cells. Each of these daughter cells differentiated or learned to secrete a specific type of hormone eventually resulting in one of the five factory cells. In about 20% of the cases in fact the parent cell (which has not yet learned to secrete anything) grows excessively creating a collection or clump—pituitary tumor. This clump can grow and in the process create pressure on adjacent structures. Therefore these nonsecreting tumors create a problem for the patient not from excess hormone production but rather because of pressure on adjacent structures.
What are the adjacent structures?
Pituitary Gland Structures
If the pressure is exerted on the other members of the pituitary gland directly it impairs their ability to secrete their specific hormone – pituitary dysfunction. Among the most sensitive factories are the sex hormones (gonadotropins). If the pituitary tumor grows sideways (fat tumor) it will compress the cavernous sinus. This structure is an important cave located on either side of the gland that is continues a channel for blood to drain out of the brain, the carotid artery to supply the brain, and the cranial nerve that move the eyes. Fortunately, dysfunction of these critical structures is a rare and late event in most cases. However it is more likely that the gland will grow tall or upward (tall tumor). Often it will extend out of the bony structure that houses the pituitary gland (sella – named after the Turkish saddle). It will then grow through the thin "saran wrap" – like membrane (diaghrama) that separates the pituitary fossa or sella from the brain. It will then start to grow upward and start to push on the junction of the optic nerves where they cross (optic chiasm). When this happens the vision becomes compromised. The pattern of vision loss is a reflection of the compression at the site of crossing and so the patient develops blind spots along both temple regions.
Both tumors that secrete hormones (functional tumors) and tumors that do not (non-functional tumors) can create this pressure or mass effect. More often it is these nonfunctional tumors that present with visual loss. In order for visual loss to occur the tumor has to be larger and grown through the confines of the sella and upward to the optic chiasm. These tumors are generally larger. The functional tumors often present when they are smaller because they have created a syndrome of excess production that prompts the patient to get help often before the vision is compressed.

Comments

Popular posts from this blog

Kate Jackson Breast Cancer a flash back

THE MOST MOMENTOUS CHANGE IN Kate Jackson's life began early one morning in January 1987, during her fourth season on the hit TV series Scarecrow and Mrs. King. After a phone call informed her that the show's taping was canceled because costar Bruce Boxleitner had the flu, Jackson went back to sleep. When she woke several hours later, "It was out of the blue, but perfectly clear," she recalls. "I sat up in bed and literally said, 'You have to have a mammogram.' " She did, and two days later a biopsy confirmed her vague fears: A minute growth found in her left breast was determined to be malignant. "I was forced to face, squared up, my own mortality," says Jackson. "I had to decide whether I wanted to live or to die. And if you choose life, as I did, it's never the same." For three TV seasons 16 years ago, she was famous as Sabrina Duncan, a girl-next-door gone glamorous and the character critics dubbed the brainiest o

"Hard nipples" - areola or nipple skin

Someone once wrote"... when i get really cold, or get goosebumbs all over my body, the whole things really scrunch up, like, my entire areola scrunches itself up into a wrinkled little mound. it looks really weird and ugly, and i haven't ever seen other people's breasts do it. what is wrong with my areola/nipples??" The answer: Well nothing is wrong. This is what my areola does too. It's a normal reaction to the coldness or to irritation / stimulation. The little muscles in the areola do a similar goosebump thing as your other skin can do. People often call this phenomenon "hard nipples". Also note that skin on areola has less feeling or sensation to it than other areas of your body. If the areola was very sensitive, then breastfeeding would probably be quite uncomfortable because the baby pulls and tugs it! The nipples are sensitive but the sensitivity changes with hormonal changes, such as occur at mestrual cycle or pregnancy. Also this v

The four stages of breast development

In Stage 1 shows the flat breasts of childhood. By Stage 2, breast buds are formed as milk ducts and fat tissue develop. In Stage 3, the breast become round and full, and the areola darkens. Stage 4 shows fully mature breasts. (Illustration by GGS Information Services.) period begins. Usually these signs are accompanied by the appearance of pubic hair and hair under the arms. Once ovulation and  menstruation  begin, the maturing of the breasts begins with the formation of secretory glands at the end of the milk ducts. The breasts and duct system continue to grow and mature with the development of many glands and lobules. The rate at which breasts grow varies significantly and is different for each young woman. Breast development occurs in five stages: Stage One: In preadolescence, the breasts are flat and only the tip of the nipple is raised. Stage Two: Buds appear, breast and nipple are raised, fat tissue begins to form and the areola (dark area of skin that surrounds